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INTRODUCTION

The classical bound on the error in linear interpolation of function f on

interval (a,b) is given by

where

Ilf'iI (a,b) = sup 1 f' (x)I

We wish to obtain meshes (xi, 1 4 i 4 n) whicn will somehow equilibrate the

"lerror" over each subinterval.

GOOD MESHES

C. deBoor (ref 1) has supplied us with a computationally simple method for

generating what he calls "good" meshes. His idea is to make the classical bound

roughly constant

i(xi+j-xi) 21if " l(xi xi+i) =constant 14 i < n

This is equivalent to

(xi+1-xi)1ff"1I(xi,xi+l) = constant

or

xi 1f "l(x,xi+l)dx = c

As n becomes large and xi+j-xi - 0 for all i, we approximate the integrand by

I f",(x)I 3 = g(x).

Thus, we have a relatively simple problem to solve

fxl g(x)dx = c 1 4 i <n
xi

If we define G(x) = fx g(t)dt, we have G(x,) = (i-1)c, therefore
X1
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G(xi) -I and xi = G
- 1 GFxn )  < i < n

xn ) = n-1 1 i

In practice, we may only have a positive, continuous, piecewise linear estimate

of g over some mesh u. We denote this estimate of g by v. G as defined by

G(x) = v(t)dt uI < x < um
u

1

would then be piecewise quadratic and invertible in the following manner:

(G*-Gi)G- I(G*) = x* = ui + 2 -----

vi+YD

where

Gi = 0, Gj+ 1 = Gj + (uj+l-uj)(vj+vj+l)/2 1 j < m

Gi G i+

p = (G*-Gi)/(Gi+l-Gi)

and
2 2(1-p)v i + Pvi+1

All this is common knowledge. Unfortunately, good meshes do not always seem

quite as good as we might like them to be. The shorter subintervals have a

fairly uniform error bound pattern, but the lengths of the longer subintervals

are overestimated, yielding larger error bounds. This is due to the fact that

the integral of the norm of g is underestimated by the integral of g. In fact,

it is easy to prove that for f(x) = xP(p > 2, 0 4 x < 1), the largest error

bound on a good mesh is exactly equal to the largest error bound on the

corresponding uniform mesh (xi+1 -xi = const).

In order to get what we might call "better" meshes, we go back to the

original problem:
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Find n-2 x's (xj and xn fixed) such that

Xi+l
(x+~~IgIXX 4 )= f Igl( ,~)dx =c 1 i < n(Xi+l-Xi)llgll(xi,xi+l) :-fxi l lll(xi,xi+l)x c

xi

This problem is described in Reference 1 as being rather difficult to solve in

general. Even if we knew what c was, solving

(xi+1-xi)B1gI1(xi~xi+1 ) = c

for xi+1 given xi would not be easy. The problem obtained upon substituting v

for g, however, is quite easy to solve (ref 2). In addition, if v is a very

good approximation to g (with m >> n), we get a virtually constant error bound

for the entire mesh!

We refer to the following equation as the "stepping" equation:

(A-a)Ilvli(aA) = c

The solution of the stepping equation for A given a and c represents the central

part of our algorithm for obtaining better meshes. Although the stepping

equation is nonlinear in A, the piecewise linearity of v enables us to solve it

noniteratively. For given a and c, we solve the stepping equation in the

following manner. Suppose a e (ui,ui+i) and we have located j such that

(uj-a)llvll(a,uj) < c < (Uj+l-a) Ilvll(d, Uj+l)

Hence,

C (uj,uj+ 1 )

To locate j, we simply search from left to right, computing the norms as we go

and checking the previous inequality. We use

IIv(l(,ui+1) = Max(v(a),vi+,)

and

Ilvll(a,uj+l) = Max(llvll(a,uj),vj+ 1 )

3



Now i f

IIVII(a 'uj) = 11IIl(Lu 1 1)

we have

(A-a)IIvII(Guj) = C

hence

=a + c/IIvII(a'uj)

But if

H1VII(a uj) < 11IIB(a,uj+l)

there is a

such that

IIvII(a uj) = IIvUI(,,t) = '/(t)

and this t is given by

t =Uj + (IIVII(a'u j)-vj)/s

where

s =(vj+i-v3)/(uj+i-uj)

Now if

(t-a) lvii (a1 uj) > c

Smust lie to the left of t and

A= a + c/Ilvf(a,u j)

as before, but if

Slies to the right of t and

(A-a)IlviI(a,A) = c

However, in this case,

iJVII(a,A) = V(A) = Vj + S(A-uj)
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Therefore,

(A-a)(vj+s(A-uj)) = c

or

(A-a)(vj+s(8-a-a-uj)) = c

or

s(A-a)2 + k(A-a) - c = 0

where

k = vj + s(a-uj)

Solving this simple quadratic equation for A - a yields

= a + (/Y-+4sck)/(2s) for k < 0

and

= a + 2c/(k+FVka+4sc) for k > 0

Having elaborated the solution to the stepping equation for arbitrary c, we

now consider obtaining the correct value of c by defining the function 4

u(c) = v-n

where v is the number of x's we get by solving the stepping equation v-2 times

(xj and xu = xn being fixed). It is intuitively clear that for small c, p will

be positive and for large c, p will be negative. Since M is a step function, we

are interested only in its leftmost zero, the correct valuf of c. When the

correct value of c has been cbtained, we shall have concurrently obtained the

better or uniform error bound mesh. Therefore, we see that to find the better

mesh, we need only solve a single nonlinear equation in a single unknown (by

modified bisection), where each evaluation of W involves an O(m) search through

the (u,v) data and O(n) solutions oF simple linear or quadratic equations.
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Suppose we are not satisfied with better meshes and decide to take the

additional step of finoing the best possible mesh. We define this b-st mesh as

one in which the maximum absolute error is constant, independent of subinterval.

Now we must work in terms of exact error instead of error bounds. The exact

error in linear interpolation of f on interval (a,b) is given by

e(x) b-a f (t-a)f"(t)dt
b-a a

+ fZ b (b-t)f"(t)dt
b-a x

If xm is the maximizing or minimizing point of e,

e'(xm) = 0

implies

f (t-a)f"(t)dt = j (b-t)f"(t)dt
a xm

which, in turn, implies that

e(xm) f x m (t-a)f"(t)dt = J b b-t)f"(t)ot
a xm

These last two equations tell us that for given a, E, and f", we can, in prin-

ciple, solve

xm

E = fx (t-a)f"(t)dt
a

for xm and then solve

E = fb (b-t)f"(t)dt
x
m

for b. We therefore see that finding the best mesh is not a very different

process from finding the better mesh. The major difference is chat two

equations must be solved in the stepping process instead of one. This stepping
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process is firther simplified to solving simple quadratic equations if we use a

pitecewise constant aoproximation to f".

The first half of the stepping process amounts to solving

R(9) +. E for

g4 ien ax where

R(5) =f(t-a)f"(t)dt

a

if f"(x) =ci on (ui,uil), we have

R(A3) = fu (t-a)f',,t)dt f A (t-a)cidt (gE~ui,ui+i))
a u

R(ui) + I ci(t-a)2
2 ui

R(ui) + 1 ci(A-ui)(A+ui-2a)

The recursion "or R is

Rij R + 1 iu~-i(iu+-a

The second half of the stepping process amonts to solving

S(y) =_E for -y

given A where

S(-Y) =f (1-t)f"(t)dt

For y e (u;,u14.1), we have

SMy f A(-y-t)f"(t)dt + f i(-Y-t)cjat

f (Iji t+y-ui)f"Ct)dt - 1 c,(I-t)-l y

fuui
=S(ui) + (Y-ui) f"(t)dt + iyu)
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Letting

ui

= i f"(t)dt

we have

Ti+j = Ti + Ci(ui+l-ui)

and the recursion for S

Si+j = Si + (ui+i-ui)Ti + ci(ui+1-ui) 2

We mention in passing that after we have computed A, and as we search for y, we

will need to compute additional A's if there are inflection points present in f.

Having given this rather brief sketch of the best mesh process, we proceed

to some interesting graphical results shown in Figures I through 4. We have

obtained good, better, and best meshes for the simple test functions x3 (1-x) 6

and x10 , and we may describe our little odyssey as follows. Starting with

deBoor's good mesh with its predictably large bounds on the long subintervals,

we then proceed to flatten these bounds out almost perfectly through the better

mesh. Proceeding one additional step to obtain the best mesh (whose maximum

error can indeed be seen to be constant), we then note the striking similarity

oetween the good mesh and the best mesh. One might therefore say that in going

from good to better to best meshes, we have come nearly full circle and can see

the wisdom of the old French proverb: "The more things change, the more they

remain the same." It would seem that the only thing deBoor can be criticized

for is excessive modesty in referring to his meshes as merely good when, in

fact, they are nearl\ best.
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